
I AD-A103 078 GEORGIA INST OF TECH ATLANTA CENTER FOR THE ADVANCEM--ETC FIG 20/11
NUMER ICAL ANALYSIS OF DYNAMIC CRAC K PRDPAGATION G ENERATIN AND -ETC U)
UL 81 T NISHIDVA, S N ATLURI NoOi 78_C 03

UNCLASSIFIED GI T-CACMSNA9 NL



.Office of Naval Research

Contract N00014-78-C-0636 NR 064-610

Technical ie __it Yo. 11

Report No. GIT-CACM-SNA 9

NUMERICAL ANALYSIS OF DYNAMIC CRACK PROPAGATION: GENERATION

AND PREDICTION STUDIES

BY

T.]Nishioka a S.N.'Atluri

A

U
CY .: • ~. . , .

ta-~I unItmMNd.

Center for the Advancement of Computational Mechanics

School of Civil Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

81 8 18 075..-



NUMERICAL ANLAYSIS OF DYNAMIC CRACK PROPAGATION: GENERATION

AND PREDICTION STUDIES

T. Nishioka* and S.N. Atluri**

Center for the Advancement of Computational Mechanics
School of Civil Engineering

Georgia Institute of Technology, Atlanta, Ga. 30332

Abstract:

Results of "generation" (determination of dynamic stress-intensity fac-

tor variation with time, for a specified crack-propagation history) studies,

as well as "prediction" (determination of crack-propagation history for speci-

fied dynamic fracture toughness versus crack-velocity relationships) studies

of dynamic crack propagation in plane-stress/strain situations are presented

and discussed in detail. These studies were conducted by using a transient

finite element method wherein the propagating stress-singularities near the

propagating crack-tip have been accounted for. Details of numerical procedures

for both the generation and prediction calculations are succinctly described.

In both the generation and prediction studies, the present numerical results

are compared with available experimental data. It is found that the important

problem of dynamic crack propagation prediction can be accurately handled with

the present procedures.

Introduction:

For dynamic crack propagation in finite elastic bodies, the interaction

with the crack-tip of stress waves reflected from the boundaries and/or emanated

* by the other moving crack-tip plays an important role in determining the inten-
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sit,.. of the dynamic singular stress-field at the considered crack-tip. Be-

cause of the analytical intractabilihy of such elasto-dynamic crack-propagation

problems, computational techniques are mandatory. A critical appraisal of

several such computational techniques was made by Kanninen [1] in 1978. Most

of the finite element techniques reviewed in (11 use conventional assumed dis-

placement finite elements near the crack-tip and hence do not account for the

known crack-tip singularity. Moverover in these techniques, crack-propagation

was simulated by the well-known "node release" technique, which, as discussed

in (1], may not be sufficiently accurate. The literature on dynamic finite

element methods for simulation of fast fracture, since the appearance of [1],

has been reviewed in [2,3,41.

In Refs. [2,3,4], the authors have presented a "translating-singularity"

finite element procedure for simulation of fast crack propagation in finite

bodies. In this procedure, a singular-element, wherein the analytical eigen

functions for a propagating crack in an infinite domain were used as basis

functions for assumed displacements, was used near the crack-tip. In simu-

lating crack-propagation, this singular element was translated by an arbitrary

amount AZ in each time-increment At of the time-integration scheme. During

this translation, the crack-tip retains a fixed location within the singular

element; however, the regular isoparametric elements surrounding the moving sin-

gular element deform appropriately. It was shown [2,3,4] that the above finite

element method, which was based [2,3] on an energy-consistent variational

principle for bodies with changing internal boundaries, leads to a direct eval-

uation of dynamic K-factors for propagating cracks. Attempts at simplifying

the above procedure, by employing alternatively, a singular element with only

the well-known Williams' eigen-functions for a stationary crack being used as

element basis-functions, or distorted triangular isoparametric elements (the so-

called "quarter-point elements"), in place of the above described singular-ele-
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ment, were made in [5]. However, all the examples presented in [2-5] fall into the

category of "generation studies" in the sense decribed earlier. Specifically,

results for finite-domain counterparts of the well-known analytical problems

for infinite domains, solved by Broberg, Freund, Nillsson, Thau and Lui, Sih et

al (as referenced in [2,3]), were presented in [2-51, to indicate the effects

of finite boundaries, and stress-wave interactions, on dynamic crack-tip stress-

intensity, in these problems.

In the present paper, which emphasises the "inverse" or "prediction" prob-

lem, namely the determination of crack-tip propagation history in a plane

stress/strain problem for a specified dynamic fracture-toughness versus crack-

velocity relation, the following topics are discussed: (i) a synopsis of

the mathematical formulation for analysis of the "generation" problem; (ii) des-

cription of the details of analysis of the "prediction" problem; (iii) detailed

description and discussion.of the numerical results of both the "generation"

and "prediction" studies of wedge-loaded rectangular double cantilever, and

tapered double cantilever, beam specimens for which experimental data has been

reported by Kalthoff et al [6,71 and independent numerical results have been

reported by Kobayashi et al [8], and Popelar and Gehlen [9]. The present

paper ends with some conclusions and a discussion of the open questions in

numerical analysis of fast crack propagation in realistic metallic structures.

Synopsis of the Formulation of "Generation" Problem:

Consider two instants of time tI and t2 = t1 + At. Assuming, without loss

of generality, that the crack propagation is in pure mode I, let the crack lengths

at tI and t2 be ZI and 2 = E I + AE, respectively. Let the displacements, strains,i 2 2

1 1 1 2 2
and stresses at t1 and t2 be, respectively, (u , t jV and j i), and (ui , tli'

and oij). The variables at time tI are presumed known. It has been shown [2,3]

that the variational principle governing the dynamic crack propagation between

t and t can be written as:
2 2
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In the above, V 2is the domain, and s a2the external boundary where time-de-

pendent tractions are prescribed, at time t ; Ti are the prescribed tractions
+ -

at time t1 at s (=s ) as well as at E +; T2 are the prescribed tractions at
I al o2 .. i

time t 2 at so2 as well as at AZ ( )+ indicates the upper half of the crack

face, which only is considered in the present mode I problem. It is seen that

1 1
a..v. are the cohesive forces holding the crack-faces together at time t. Thus,

S21 1 + +
it is seen that the integrand (a . (6u in the last term of the r.h.s. of

ij-i

Eq. (1) corresponds to the term of energy-release rate due to dynamic crack

propagation. The Eq. (1) may thus be viewed as a virtual energy-balance re-

lation for dynamic crack-propagation, and hence the present numerical method

based on Eq. (1) is inherently energy-consistent.

11 2 2 2
In Eq. (1) (ohiva.) are known, while (a ck-aCes and u ) are the variables.

itissen ha ih J erd(ij ) (uii in ' th attr f h ~•o

Now, Eq. (1) is used to develop a finite element approximation at time t Thus,

the domain V is discretized into a finite number of elements, with a domain V

immediately surrounding the crack-tip being treated as the so-called "singular

element", and the domain V -V being mapped by the well-known, 8-noded, isopara-

metric elements. In the singular-element Var the basis functions for assumed

dispalcements are the crack-velocity dependent pigen-finction solutions to the

elsto-dynamic problem of crack-propagation in an infinite domain, as discussed

in this paper.

Note that at time ' in the present mode I problem, the crack tip is oc-

ated at x,= F 14+ AY and hience the singu-ar-elemenL is centered at x, = E + .

1 1

In developing the equations for the finite element mesh at t2 it is seen from

Eq. (1) that the variation of i and u mpr st be known in the finite element mesl
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, i u, and I were solved for, in the finite element meshat t2 . H.owever, oij, uJ n eeom

at t In the mesh at t the crack-tip was located at x, = E1 and hence the

crack element was centered at E Thus between t1 and t2 (t1+At) the crack

element is translated by an amount AE. While the crack-element is trans-

lated, only the elements surrounding the moving crack-tip are distorted. Thus

the finite element meshes at times t and t2 differ only in the location of the

crack-tip (and hence the crack-element) and the shapes of the immediately sur-

rounding isoparametric elements. Thus, the known data at a and in the

mesh at tI is interpolated easily into corresponding data in the mesh at t2 .

Further details of the above translating-singularity-element method of simu-

lating dynamic crack propagation in arbitrary shaped finite bodies can be found

in [2,3].

We now remark briefly on the basis functions for assumed displacements used

in the singular element. Let x (a-1,2) be fixes rectangular coordinates in the

plane of the present 2-dimensional elastic body, with the crack-tip moving along

the x1 axis and x2 is no-mal to the crack-axis. We introduce a coordinate sys-

tem (1,x2) which remains fixed w.r.t. the propagating crack-tip, such that

= X1-vt, where v is, without loss of generality, the constant speed of crack-

propagation. It can be shown [2,3] that the elastodynamic equations, governing

this problem, for the wave potentials P (dilatational) and 4 (shear) are:

[l-(V/Cd)2](;2 " 2) + (32 2/ 2 =-(2v/c )()2 /3t ) + (i/c 2 ) 2 O/t2

(2)
and a similar equation for 'p. except that cd in Eq. (2) is to be replaced by c

where cd and cs are the lilatational and shear wave speeds respectively. The

"steady-state" eigen-function solution to the homogeneous part of Eq. (2), namely,

the solution which appears time-invariant to an observer moving with the crack-

tip, and satisfies the prescribed traction conditions on the crack face (F O,

• x2=#O) can he derived easily, as Indicated in (21 and elsewhere. We use these

eigen function solutions for an infinite body, as basis functions for assumed
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displacements within the "crack-tip-singularity-element". However to satisfy

the full Eq. (2), the undetermined coefficients, P. below, in the eigenj

function expansion are taken to be functions of time. Thus, within the singular

element,

u ( ,x 2 ,t) = u j(1,x 2 ,v)B 1 (t) [a=1, 2 ; j=I,2..N] (3)

where u . are the above described eigen-functions, and 6. are undetermined
ajj

parameters, which are to be determined from the finite element equations for

the cracked body.

As seen from Eq. (3), .the eigen functions u J depend on the crack-tip

velocity. In the present numerical approach, the crack-tip velocity is assumed

to be constant within each time-increment At, say v1 between t1 and t +At, and

v 2 between t2 and t 2+At, etc. Thus, between t1 and t +At, the eigen-functions

embedded in the singularity-element correspond to velocity v1 and those between

t 2 and t 2+At correspond to velocity v2 . Thus, the present finite element

method is capable of handling non-uniform-velocity crack propagation.

The total velocities and accelerations of a material particle in the sin-

gular element, within each time step, correspoinding to Eq. (3), can be written

as:

1 C, u j j - vu j , (4)

and
U u 13 -2vu j + v2 u j (

where ),- =(/', and () implies a time derivative.

The salient features, pertinent to the studies reported in this paper, of

the present method, the mathematical details of which are reported elsewhere

[2,3], are as follows:

(I) The eigen functions u I ( =1,2) lej. to the familiar (I/r) singu-

larities in strains and ,tresses. Thus the coefficient Pt (t) is directly

related (to within a scalar constant) to the dynamic stress intensity factor,

K(.
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(ii) The compatibility of displacements, velocities, and accelerations of

material particles at the boundary of surrounding elements with those of the

surrounding (usual) isoparametric elements is satisfied through a continuous

least squares approach. If the displacements, velocities, and accelerations

of the nodes at the boundary of the singular-element, Vs, are q, 4, and 4 re-

spectively, the above least-squares technique leads to linear algebraic relations

between the sets (q, 4, 4)and (a, 5, and R) where B are undetermined parameters

in the eigen-function expansion, Eq. (3), in the singular-element. From these

equations and the final finite element equations governing the nodal displace-

ments, velocities, and accelerations of the cracked structure, the variables

a, a, a can be computed directly. Thus, the dynamic stress-intensity factor,

as well as its first two time derivatives, are computed directly in the present

procedure.

(iii) The "transient" finite element equations are integrated in time, using

the well-known Newmark's B-method [2,3].

(iv) Because of the use of the eigen functions in a moving coordinate sys-

tem, as in Eq. (3), In the singular-element, there is the presence of an "ap-

parent" damping matrix for the singular element. Further, for the same reason,

this damping matrix as well as the stiffness matrix of the singular-element, are

unsymmetric. However, the stiffness and mass matrices of the surrounding iso-

parametric elements are, of course, symmetric. Thus the final finite element

equation system will have a "small" degree of unsymmetry. This equation system

is solved, in the present studies, using a simple iterative scheme.

Details of Analysis of Prediction Problem:

The problem here is to predict the time histories of crack-length [E(t)],

crack-velocity V'(t) v(t)J. and possible crack-arrest, for a specified re-

lationship of dynamic fracture toughness [KIDI versus crack-velocity [v]. Until

* very recently, it was presumed that the relationship KID versus v was a unique
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material property. Recently, however, this presumption was brought to question

as discussed in 1I0, due to the apparent geometry and load-rate dependence of

the dynamic fracture toughness. A slight specimen-geometry dependence of dy-

namic fracture toughness versus crack-velocity relationship was noted in the

experimental results of Kalthoff et al [6,71. Kanninen et al[lo] also found

that dynamically initiated (impact loading) dynamic crack-propagation and quasi-

statically initiated dynamic crack propagation, apparently are characterized

by markedly different toughness properties. Ways out of this apparent impasse

that have been suggested include: (i) to postulate the dependence of dynamic

fracture toughness on second (acceleration) and higher-order time derivatives

of the crack-length and (ii) considerations of nonlinear effects near the

crack-tip, such as plasticity.

The problems considered in the present paper, however, may be argued to

fall into the reals of linear elasto-dynamics. Experimental specimens for which

the present analysis is applied, made of Araldite Bused by Kalthoff et al [7]

may be considered to be effectively linear-elastic, eventhough secondary effects

due to rate-dependent viscoelastic properties of the specimen may be present.

In any event, the present numerical results and their comparison with the ex-

perimental data may effectively serve to check the reasonableness of this ap-

proximation. Further, the presented analysis procedure can easily be extended

to account for any postulated dependence of dynamic fracture toughness on crack-

tip acceleration and/or other higher order time derivatives of crack length,

ie when KID = K D(.,,i.

With this motivation, we present some details of anlaysis of the prediction

problem when the fracture toughev;'; relation is given in the form KID ' K ID().

Thus, this analysis cannot, inherentlv, either add to or lessen the controversy

surrounding the pecimen ,eometrv dependence ot KID'

Let the prediction problem !e i n:idered to have been solved upto time t 1 *
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In order to find the solution at t2 (7t1 +At), the crack-velocity at t2, namely,

v2 -i(t2) must be found. To this end, it is first noted that the dynamic stress-

intensity factor can be written as:

KI = KI(t,v) (6)

Since, in the present procedure, the velocity of crack-propagation is assumed

to be constant within each time-step, an approximate procedure to predict the

velocity at [tI+(At)/2] will be sought. Using double Taylor series expansion,

it is seen from Eq. (6) that:

l 1 2' 1 n-o n. 2 at a IWi~

(7)

where Kip is the predicted value of K at t + (At/2). One can, upon expanding

terms, write Eq. (7) as:
t~~ 1.At.2

Kip = Kl(tl'Vl) + (L-') KI (tl'V ) +--) KI (t)lV ) + R
1 t 1 ~ 2**1 2

(t)+ 81t) (t ) +2I2 11 '- ~(t ) + R E K* + R (8)

where, () = ()/at, and R is "residue" of the Taylor expansion indicated in

Eq. (8). Note that use is made of the salient feature of the present analysis

procedure, that a1(t) E KI(t), a1 being the coefficient of the first eigen-func-

tions as in Eq. (3).

Since during dynamic crack propagation, KI = KID, using the predicted Kip

of Eq. (8) and the specified KID versus (t) relation, the crack velocity v(I)

at the time [tI + (At/2)] can be predict-d. If the arrest dynamic-toughness is

arr arr
K ID , crack-arrest is predicted if K < K . Thus, in the present procedure,K ID ,IKp - ID

crack arrest is predicted as a terminal event, if any, in the propagation analysis.

Using the above predicted crack-velocity value, the finite element system

of equations at time t2, based on Eq. (1), are constructed, and, from these,

the actual dynamic stress-intensity factor K (t (t,)]is computed. Thus,

the actual K at tI + (At/2) is computed, as.

K (t + 't) (ll2)[K (t I ) + K(t2)1 (9)
1 1 2 1 1 r1I 2J

(9
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The correlation between the predicted KIp of Eq. (8) and the actual KI of Eq.

(9) can be seen to depend on the residue, "R", of Eq. (8). To ensure this cor-

relation, a further approximation is introduced in the present work that the

residue R at t1 + (ft/2) can be approximated by its known value at [t -(At/2)],

in the generic sense. Thus, in the present procedure, the generic algorithm

used to find Kip at t1 + (At/2) can be written as:

K At (t' + (At 2 ; IAt2 8(t)

K (t - -)- K*, (t -(10)
1 1 2 ip 12

In all the presently reported computations, when Eq. (8) with REO was used, a

maximum error of the order of 3% between Kip and KI was noted. However, Eq. (10)

was used, this maximum error reduced to the order of 0.5%.

We now discuss the "generation" and "propagation" calculations performed

on rectangular as well as tapered double cantilever beam specimens of Araldite

B materials. The results are compared with the corresponding experimental

results reported by Kalthoff et al [6,7], and pertinent conclusions are drawn.

Generation Calculations:

To demonstrate the "generation" type calculations, we first treat a wedge-

loaded rectangular double cantilever beam specimen (WL-RDCB), the crack-propagation

histories and dynamic stress-intensity factor histories in which were directly

measured by Kalthoff et al [6]. The relevant geometric data of the WL-RDCB speci-

men are indicated in Fig. I which also shows the finite element model wherein

the moving-singularity-element is shown hatched, at the beginning of crack propa-

gation. The material constants used i.n the present analysis are: E=3380 MN/m 2

and Poisson's ratio, v=O.33. In the experiments of [6], several test specimens,

1) As can be expected from Eq. (1), inherent numerical errors (usually, very
small) in the present formulation are oscillatory in nature [5]. Thus R(++At/2)
is approximated by -R(t-i t/w).

-10-



wherein cracks were initiated from blunted notches with crack-propagation

initiation stress-intensity factors Klq larger than the fracture toughness K I,

were studied.

Note that the actual loading mechanism in the experiment is closer, in num-

erical simulation, to loading the finite element model at point A in Fig. 1, with

the material to the left hand side of line BA in Fig. 1 also considered to be

participating in the motion. In the first attempt at the analysis, however,

the loading was modeled to act at point B in Fig. 1 instead, and the material

to the left of line AB was not modeled. In the remainder of the paper, the

numerical model wherein load was applied at point A of Fig. I and the material

to the left of line AB (Fig. 1) was also modeled, is often referred to as the

"actual loading condition", and the other one as the "simplified loading con-

dition", respectively.

In their report, Kalthoff et al 16] identify the RDCB specimens with K
Iq

312 3/2
values 2.32 MN/m and 1.33 MN/m , respectively, as specimens No. 4 and 17.

For convenience, the same identification is used in the presently reported

numerical simulation.

As noted earlier, the "generation" calculation used as input, the experi-

mentally measured crack length (and hence crack-velocity) history. The output

of the calculation is the directly computed dynamic stress-intensity factor

at the tip of the propagating crack for various time instants.

Fig. 2 shows the considered crack velocity and length history for RDCB

specimen 4 as reported in [6). Fig. 2 also shows the presently computed dynam-

ic KI as a function of time, along with comparison experimental results of (6],

and numerical results of Kobayashi [8]. The present calculation for KI was

performed in 3 alternate ways: (i) direct computation, since K is same as

the undetermined parameter in the element basis functions as mentioned

+ - Ii -
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earlier, (ii) from a crack-tip integral which gives directly the crack-opening

energy, and using the crack-velocity dependent relation between KI and the

energy-release rate, and (iii) calculating fracture energy from a global energy

balance relation. It is seen that all the 3 values agree excellently, thus

pointing to the inherent consistency of the present numerical procedure. It

should be pointed out that the results in Fig. 2 were based on using the

forementioned "simplified loading condition". As seen from Fig. 2, the present

numerical results, as well as those of Kobayashi (81, exhibit a pronounced

peak as compared to the experimental results, even thoug the peak occurs much

later in the present results as compared to those of Kobayashi [8].

Fig. 3 shows variation of different energy quantities: input energy

(W); kinetic energy (T); strain energy (U); and fracture energy (F), for RDCB

specimen 4, when the "simplified loading condition" is used. It should be

noted that in the present procedure, each of the quantities W, T, U, and F is

calculated separately and directly. Thus, the fact that U+T+F is equal to W

at all times (no other energy dissipation mechanisms are accounted for here)

is an inherent check on the accuracy of the calculation. That this is so can

be seen from Fig. 3.

The Fig. 4 demonstrates the effects of the alternate loading-conditions

employed in the finite element model of RDCB specimen 4. In both the cases,

3/2
the model is loaded so that K q=2.32 MN/m . For this value of Klq , the de-

formation profiles of the crack face when the load is applied at points A and

B, respectively, are shown in Fig. 4. It is seen from Fig. 4 that for the same

valut, of K q: load (and dispacements) at points A and B, respectively, are:

970.7N (and 0.615 mm) and 972.8N (and .74 mm). Thus when the load is modelled

to act at B (the so-called "simplified loading case") there is more apparent

input of energy to the specimen than when the load is modeled to act at A

- 12 -



l-q

(the so-called "actual loading case") when an identical crack-length history

as in Fig. 3 is used, but with the "actual loading condition", the computed

dynamic k-factors are shown in Fig. 5. Comparing Figs. 2 and 5, it is seen

that an apparently small modification in the load-condition modeling contributes

to a substantial difference in the k-factor variation. It is seen that the

results in Fig. 5, for the'"actual loading case" agree remarkably well with the

experimental results (considering the possible rate-sensitive behaviour of

Araldite B as opoosed to the present linear elastic modeling), and the peak in

the present K-results is much smaller than that in Kobayashis' 18] results.

The variation in energies W, U, T, F for the "actual loading case" is shown in

Fig. 6. Comparing Fig. 3 and 6 it is seen that W in the "simplified loading

case" is higher than in the "actual"; T is higher in the "simplified" than in

the "actual", and that the variations of U and F are qualitatively similar in

both the "loading cases".

The effect of the two loading cases for the RDCB specimen 17 is exhibited

in Fig. 7. It is seen that for the same value of K q=l.33 MN/m3/2, the load

(and displacement) at points A and B are, respectively: 556.5N (and 0.35 mm)

and 557.7N (0.425 mm). Thus, once again, the apparent input energy to the

specimen is larger in the "simplified loading case" than in the "actual

loading case". This anamoly in modeling will have consequences in the

"propagation" or "application" phase calculations in the RDCB No. 17 specimen

to be discussed later.

"PROPAGATION" (OR "APPLICATION") CALCULATIONS

We now present calculations aimed at predicting crack-propagation

history, and possible arrest, given the initial loading conditions and using

the hypothesis that there is a given material toughness data in the form of a

dynamic fracture-toughness-versus-crack-velocitv-relation. Experimentally

-13-



evidence (6,71 that there is the possibility of a slight geometry dependence

of this toughness property. The material toughness data surmised from the

experimental findings of [6,7] for RDCB specimens, and tapered double cantilever

beam specimens (TDCB) are shown in Fig. 8. In the present calculations, the

RDCB and TDCB toughness data are used in the prediction of crack-propagation

histories in RDCB and TDCB specimens, resperctively. Calculations based on

using RDCB toughness data for analysing TDCB specimens, and vice versa, are

not orted here.

The results of the "propagation" or "application" type calculations for

RDCB specimen 4, using the toughness property data of Fig. 8 and "simplified"

boundary conditions, under plane stress conditions, are shown in Fig. 9. It is

seen that the present predicted crack length at arrest is larger than in the

experiment, even though the stress-intensity faztor variation correlates well

with the experimental result for most of the crack-propagation history. The

respective results with the "actual boundary conditions", and under plane stress

conditions, are shown in Fig. 10. It can be seen from Fig. 10 that the presently

calculated length history, crack-velocity history, as well as the K-factor

variation, are all in remarkably good agreement with the experimental results.

It is noted that the present peak value in the K-factor is much closer to

the experimental result, than that in the solution by Kobayashi [8]. To com-

pare the effects of plane stress versus plane strain conditions, a "propagation"

calculation was performed on the R)CB No. 4. Specimen, with "simplified boundary

conditions", and the results are shown in Fig. II. Comparing Fig. 9 and 11,

it is seen noticeable difference can be found between the stress-intensity fac-

tor variation between the two cases in the initial phase of the crack propagation

history, and the final crack-arrest length ia much higher in the plane stress

case than in the plane-strain case.

14
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The energy variations, U, T, F and W for the cases: (i) plane-stress,

simplified loading case, (ii) plane-stress, "actual loading case", and (iii)

plane-strain, simplified loading case, are shown in Figs. 12, 13, and 14 res-

pectively. Comparing Fig. 12 and 13 it is seen that the ratio of maximum

kinetic energy to input energy in the simplified loading case (0.278) is much

larger than in the actual loading case (0.233), while the crack arrest length,

comparing Figs. 9, and 10, is much larger in the "simplified loading case" than

in the "actual loading" case. Likewise, comparing Figs. 12 and 14, it is seen

that the ratio of maximum kinetic energy to input energy in the plane-strain

case (0.266) is smaller than in the plane-stress case (0.278), while the crack

arrest length is smaller in the plane strain case as compared to the plane-stress

case.

The crack-surface deformation profile for the propagating crack in RDCB

No. 4 specimen are shown in Fig. 15 for various instances of time. Noting the

essentially linear shapes of these profiles, except asymptotically close to the

crack-tip, the possibility exists to devise simple method to find the stress-

intensity factors from the crack-mouth opening displacment. This possibility

is successfully explored in [11]. Figs.16 through 21 show the contours of

principal-stress difference values at various instances of time in the moving-sin-

gularity element of the RDCB 4 specimen model, in the plane stress case. The sequen-

tial pictures demonstrate graphically, not only the singular-stress-field but

the total stress field, and its magnification near the propagating crack-tip.

Since in the present finite element method, the effects of stress-wave inter-

actions are accurately accounted for, and the total stress (singular as

well as nonsingular) field can be computed accurately, results similar to these

as well as the results for cimcumferontial stress 000 (not shown here) can be

used in the analysis of crack-branching. Such studies will be presented else-

-15-



where, shortly.

The results for RDCB 17 specimen for: (i) plane stress, simplified

loading case, and (ii) plane stress, actual loading case, are shown in Figs.

22 and 23 respectively. Comparing Figs. 22 and 23, it is seen that the higher

crack arrest length in the simplified loading case than in the actual loading

case can be attributed to the higher apparent input energy in the former than

in the latter case, as seen from Fig. 7. In the plane-stress, actual loading

case, the calculation was continued for a sufficient time after crack arrest

(t_320 sec), and the observed oscillation in K-factor is shown in Fig. 24. This

oscillation is qualitatively similar to that recorded in the experiments [6 ].

The results for the plane-strain, simplified loading case, are shown in Fig. 25.

In comparing Figs. 22 and 25, comments essentially similar to those made in

comparing Figs. 9 and 11, can be made. The energy variations in RDCB 17 specimen

for: (i) plane-stress, simplified loading case; (ii) plane-stress actual

loading case, and (iii) plane-strain, simplified loading case, are shown in Figs.

26, 27, and 28, respectively. Again, in comparing Figs. 26, 27, and 28, comments

essentially similar to those in connection with the comparison of Figs. 12,

13, and 14, respectively, can be made. Thus there is a correlation between the

ratio of the maximum kinetic energy to input energy, and the crack arrest length.

The crack-surface deformation profiles at various instants of time in RDCB 17

specimen shown in Fig. 29 are similar to those in Fig. 15 for specimen 4. Re-

sults such as in Figs. 15 and 29 form the basis for methods of obtaining K from

crack-mouth-opening displacments discussed by the authors elsewhere [11].

The finite element model for the tapered double cantilever beam (TDCB)

specimen is shown in Fig. 30. The cross-hatched element shown in Fig. 30 is

the authors' moving singularity element, and the mesh shown in Fig. 30 is thus

at the beginning of crack propagation.

.- lb -



As in RDCB specimen, two loading cases were considered: (i) the edge

loading case wherein load is supposed to act at point B, and (ii) the actual

pin loading case wherein the load is modeled to act at point A in Fig. 30.

Plane stress conditions are invoked in both the loading cases. The influence

of loading position is demonstrated in Fig. 31. In all the cases shown in

3/2
Fig. 31, the model is loaded so that K q=2.08 MN/m . As the loading point

approaches to the specimen surface while keeping the xl-coordinate constant,

the displacement at the loading point becomes larger while the reaction force

is almost constant, thus the input energy to the specimen becomes higher. The

input energy in the edge loading (loading point B) is also shown in Fig. 31.

It is seen that the input energy in the edge loading case is much higher than

that in the actual loading case.

The computed results for K(t), Z(t) and (t) for both the loading cases

are shown in Figs. 32 and 33 respectively. In the edge loading case as shown

in Fig. 32, after 240 psec the stress intensity factor becomes almost constant

and the crack propagation with a relatively slow speed (v = 100 m/sec). In the

actual loading case, however, as shwon in Fig. 33 the crack was arrested earlier

than in the edge loading case. The K Xvalue variation with crack length for

the actual as well as edge loading case is shown in Fig. 34. The result in

the actual loading case shows better agreement with the experimental results

obtained by Kalthoff et al [7].

The energy variations for the edge loading and actual loading cases are

shown in Fig. 35 and 36 respectively. Comparing Figs. 35 and 36 it is seen

that the ratio of maximum kinetic energy to input energy in the edge loading

case (0.132) is much larger than that in the actual loading case (0.093). As

also observed in the RDCB specimen, the ratio of maximum kinetic energy to input

energy correlates with the crack arrest length, i.e., increasing E with
ar
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the increasing value of (max T/W). Here the correlation between the total energy

(U+T+F) and the input energy W in the TDCB specimen is much better than in the

RDCB specimen as shown earlier.

The crack opening profiles in the edge loading case, at various instants

of time, are shown in Fig. 37. Because of the loading at the edge of the

specimen, these profiles are distinctly nonlinear as compared to those in actual

loading case (see Figs. 15 and 29 in the RDCB specimen).

Finally, Figs. 38 to 42 exhibit sequentially, the contours of principal-

stress difference at various instants of time in the moving-singularity element

of the TDCB specimen with the edge loading. It is noted that the size of the

moving-singularity element (16x8) mm for the TDCB specimen while it is (42x21) m

for the RDCB specimen. Comparing Figs. 16 to 21 on the one hand, and Figs. 38

to 42 on the other, it is seen that the effects of crack-propagation and stress

wave interactions are more complex in the TDCB specimen than in the RDCB specimen.

Concluding Remarks:

The results presented above indicate that the presently developed compu-

tational procedures are capable of accurately predicting dynamic crack propa-

gation and arrest, based on the hypothesis that there exist a "reasonable"

geometry independent material property in the form of a dynamic-fracture- tough-

ness-versus-crack velocity. The results also demonstrate the importance of

modeling the loading conditions and other boundary conditions highly accurately,

in an elastodynamic crack propagation problem.

However, other questions that may be germane to the subject of dynamic

fracture mechanics itself, such as the load-rate sensitivity of dynamic frac-

ture toughness, etc., need to be resolved before the power of the present pro-

cedures can be fully tested. These questions, while not forming the subject of

the present paper, have been attempted to be discussed by the authors [12], and

others 101 elsewhere.
-18-
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Figure Captions:

Fig. 1: Finite element model for RDCB specimen

Fig. 2: Variation of dynamic stress intensity factors in RDCB No. 4 with
simplified loading (generation phase)

Fig. 3: Energy variations in RDCB No. 4 with simplified loading (generation
phase)

Fig. 4: Crack opening profiles in RDCB No. 4 with different loading conditions

Fig. 5: Variation of dynamic stress intensity factors in RDCB No. 4 with actual
loading (generation phase)

Fig. 6: Energy variation-in RDCB No. 4 with actual loading (generation phase)

Fig. 7: Crack opening profiles in RDCB No. 17 with different loading con-
ditions

Fig. 8: Crack velocity versus dynamic fracture toughness relations for
Araldite B epoxy (Kalthoff et al)

Fig. 9: Variation of dynamic stress intensity factors in RDCB No. 4 with
simplified loading (application phase, plane stress)

Fig. 10: Variation of Dynamic stress intensity factors in RDCB No. 4 with
actual loading (application phase, plane stress)

Fig. 11: Variation of dynamic stress intensity factors in RDCB No. 4 with
simplified loading (application phase, plane strain)

Fig. 12: Energy variations in RDCB No. 4 with simplified loading (apnlication
phase, plane stress)

Fig. 13: Energy variations in RDCB No. 4 with actual loading (application phase,

plane stress)

Fig. 14: Energy variations in RDCB No. 4 with simplified loading (application
phase, plane strain)

Fig. 15: Variation of crack opening profiles in RDCB No. 4 (actual loading)

Fig. 16: Contours of principal-stress difference in RDCB No. 4 (t-O.Ousec)

Fig. 17: Contours of principal-stress difference in RDCB No. 4 (t-l00wsec)

Fig. 18: Contours of principal-stress difference in RDCB No. 4 (t-200sec)

Fig. 19: Contours of principal-stress difference in RDCB No. 4 (t-30usec)

Fig. 20: Contours of principal-stress difference in RDCB No. 4 (tin400jsec)

Fig. 21: Contours of principal-stress difference in RDCB No. 4 (t-528sec)

2
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Fig. 22: Variation of dynamic stress intensity factors in RDCB No. 17 with
simplified loading (plane stress)

Fig. 23: Variation of dynamic intensity factors in RDCB No. 17 with actual
loading (plane stress)

Fig. 24: Variation of dynamic stress intensity factors in RDCB No. 17 after
crack arrest

Fig. 25: Variation of dynamic stress intensity factors in RDCB No. 17 with

simplified loading (plane strain)

Fig. 26: Energy variation in RDCB No. 17 with simplified loading (plane stress)

Fig. 27: Energy variations in RDCB No. 17 with actual loading (plane stress)

Fig. 28: Energy variations in RDCB No. 17 with simplified loading (plane strain)

Fig. 29: Variation of crack opening profiles in RDCB No. 17 (actual loading)

Fig. 30: Finite element model for TDCB specimen

Fig. 31: Input energy variation in TDCB specimen with various loading points

Fig. 32: Variation of stress intensity factors in TDCB specimen with edge loading

Fig. 33: Variation of stress intensity factors in TDCB specimen with actual
loading

Fig. 34: Dynamic stress intensity factor versus crack length relations for

TDCB specimen

Fig. 35: Energy variations in TDCB specimen with edge loading

Fig. 36: Energy variations in TDCB specimen with actual loading

Fig. 37: Variation of crack opening profiles in TDCB specimen with edge
loading

Fig. 38: Contours of principal-stres., difference in TDCB specimen (t-0.Ousec)

4 Fig. 39: Contours of principal-stres difference in TDCB specimen (t-100psec)

Fig. 40: Contours of principal-stress difference in TDCB specimen (t-200Osec)

Fig. 41: Contours of principal-stress difference in TDCB specimen (t-300usec)

Fig. 42: Contours of principal-stress idfference in TDCB specimen (t-400psec)
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